Telegram Group & Telegram Channel
Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение



tg-me.com/ds_interview_lib/342
Create:
Last Update:

Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/342

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA